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ABSTRACT

A finite difference method is developed for the large de-
formation elastic-plastic dynamic buckling analysis of axisym-
metric spherical caps with initial imperfections. The problem
formulation is based on governing differential equations of
motion, treating the plastic deformation as an effective plas-

tic load. Both perfectly plastic and strain hardening behavior

are implemented in the program. Strain hardening is incorporated

through use of the Prager-Ziegler kinematic hardening rule, so
that the Bauschinger effect is accounted for. The solution for
the large deformation elastic-plastic dynamic response of a
spherical cap is compared very favorably with other findings.
Two spherical cap‘fgdels are selected to study the title problem.
Results obtained indicate that both plastic yielding and initial
imperfection play significant roles in reducing the load carry-
ing capacity of these shell structures. Both increase their
influence as the thickness to radius ratio and the imperfection
magnitude increase,‘;éspectively. It is also found that dynamic
effect has the influence of lowering load carrying capacity of

perfect spherical caps; however, its influence on imperfect

spherical caps depends on the magnitude of initial imperfections.
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INTRODUCTION

Dynamic buckling analysis of shell structures has been the
subject of intense study. Shell structures designed according
to quasi-static analysis may fail under conditions of dynamic
loading. For a more realistic prediction on the load carrying
capacity of these shells, in addition to the dynamic effect,
considerations should also include other factors such as non-
linearities in both material and geometry, initial imperfec-
tions, etc., since these factors, in a different manner, may
also affect the magnitude of this capacity.

Large deformation dynamic buckling analysis was studied
by several authors, notably Budiansky and Roth [1], Huang [2],
Stephens and Fulton [3], Stricklin, et al. [4] and Ball and
Burt [5]. A striking difference between the static and dynamic
buckling analyses is on the buckling criterion. The dynamic
snap-through, suggested in [1] and adopted in all these studies,
is generally accepted as a means to obtain dynamic buckling
loads of spherical caps under uniform step loading. Results of
spherical caps obtained from these studies are in reasonable
agreement.

Lffect of initial imperfections on dynamic buckling loads
of axisymmetric spherical caps was examined in Ref. [6]. It is
found that initial imperfections do indeed have the effect of
reducing the cap buckling capacity, and that the rate of change

of the buckling load with respect to the imperfection is
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greater when caps respond statically than dynamically. Two

types of loading were also treated in Ref. [6], namely, step i
pressure of infinite duration and triangular pulses of various

time durations. It is also revealed that the pulse duration

has a very profound impact on the magnitude of the dynamic

buckling load, and that the step loading of infinite duration,

as a limiting case of triangular pulses, provides the most severe
loading situation for the dynamic buckling analysis.

The combined effect of material and geometric nonlineari-
ties on the shell behavior was studied by Marcal [7], Bushnell
[8], Levine, et al. [9], and Kao [10]; the effect of initial
imperfections was also considered in Ref. [10]. It is observed
in Ref. [10] that both initial imperfection and plastic de-
formation have a similar influence of reducing shell load
carrying capacity, and that the influence of plastic de-
formation decrecases with increase of the imperfection magnitude.
It is also found from this reference that the cap geometric
parameter A , an important factor in the elastic response, be-
comes meaningless in the elastic-plastic buckling analysis of
spherical caps.

The purpose of this paper is to obtain large deformation

clastic-plastic dynamic buckling loads of axisymmetric spherical

-~

caps with initial imperfections. The problem formulation is
based on equilibrium equations of motion, treating the plastic
deformation as an effective plastic load [10,11]. Governing

equations are replaced by finite differences and a direct
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method is applied for the time integration. At each time step,
a relaxation technique [12] is introduced to solve nonlinear
algebraic equations. Plasticity relations are derived from the
incrcmental flow theory [13] together with the von Mises in-
itial yield criterion and the Prager-Ziegler kinematic harden-
ing rule [14,15]; this rule predicts an ideal Bauschinger
effect.

In the next two sections, governing equations of motion
and plasticity relations are subsequently given. This is fol-
lowed by the description of the general solution procedure and
dynamic buckling criteria. In the NUMERICAL RESULTS AND DIS-
CUSSION section, first, the present solution of the large de-
formation elastic-plastic dynamic response of a spherical cap
is compared with other findings; then, results of the title
problem are presented and a general discussion on these re-

sults is given. Conclusions are outlined in the final section.

GOVLERNING EQUATIONS OF MOTION

The geometry of a spherical cap is shown in Fig. 1la, in
which I is the central height, R the shell radius and a is the
base radius; W(r,t) and U(r,t) &re the displacements along nor-
mal and tangential directions, respectively, and Wi(r,O) is
the initial imperfection; q(r,t) is the applied pressure. The
undeformed shape of the perfect spherical cap can be adequately

described by

Z=HI[1- (r/a)?] (1a)
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where r is the radial coordinate. The radius of curvature of

the shell is approximated by

R = a?/2H (1b)

Figure 1b shows an element with the stress resultants Nr
and Ngo» the transverse shear Qr and the moments Mr and Me. The
cquations of equilibrium including inertia forces in this ele-

ment are

(fN)' - Ny = 0 (2)
[*N_ (We - 2) + Q] + rq = rphW (3)
(M) - Mg - TQ. = 0 (4)

where h is the shell thickness, p is the mass per unit volume
of the shell and Wf = W + Wi; prime and dot denote differen-
tiations with respect to r and t, respectively, and 6 is the
circumferential coordinate.

It is noted that, in light of the assumed shallowness,
the effect of transverse shear Qr and radial inertial force
rphﬂ in Eq. (2) is neglected, and that the nonlinearity has
been introduced in Eq. (3) by considering the influence of Wf.

Eliminating Qr in Eqs. (3) and (4), we obtain

1

1 Ve 1 .
T Mgt N (WE' + ®) + Ng(= + ) + a=phW .(5)

2 1
v Y — ' - —_—
Mr YT Mr

Egqs. (2) and (5) are the basic equations for the dynamic

analysis of axisymmetric spherical caps in this paper. To
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solve these two equations, we elect to express them in terms
of the components U and W of the displacement. For this pur-
pose, stress-strain and strain-displacement relations are re-

quired.

Stress-Strain and Strain-Displacment Relations

For a shell deforming into a plastic range, the strain in
a point within the thickness can be considered as a combination

of its elastic and plastic components:
{e} = {e°} + (eI} (6)

where {e}, {e®} and {eP} are the total, elastic and plastic
strain vectors, respectively. The total strain can also be ex-

pressed as a sum of the membrane and bending components:
{e} = {e} + z{k} (7)

where z is the vertical coordinate through the shell thickness
(Fig. 1b).

Membrane and bending strains are related to displacements

by
. (P 2
B, = U Rt 77+ Wwy
DL
“o T R
i (8)
Kp ® -
WI
- et
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Note that the elastic components of strains are the only

strains which can be related to stresses by lHook's law:

{o} = [E] ({e} - {eP]) (9)

where [E], the elastic strain to stress transformation matrix,

E 1 V
[E] = = (10)
1-v Y 1

in which E is Young's modulus and v is Poisson's ratio.

is given as

Membrane stress resultants and bending moments are ob-

tained by
h/2
{N} = f {oldz (L)
-h/2
h/2
{T-I}=f folzdz . (12)
-h/2

Substituting Lqs. (6-9) into Eqs. (11) and (12), we obtain

the membrane forces

p

Nr = Eh 1 i €r Nr
i 73 " )op (13)

N6 1-v V k €4 he

where the effective plastic membrane forces are

NP h/2 c'(
| (E] f ' Vaz (14)

R — a




and the moments

M 1 v K MP
e | S B b (15)
M, v 1 K Mg

where D = Eh3/12(1-v2), and effective plastic moments are

P p
M h/2 (&
Y = [E] -/' 'Y o.dz (16)
Mg -h/2 eg

Governing Equations in Displacements

The governing equation involving the first major displace-

ment U can now be obtained by substituting Eq. (13) into Eq. (<):

g e e %7 + G(W). = léﬁi a? (17)
wherc

G(W) = FL(W) + vEy() + LY (F_-F)

FL(W) = -W/R + (W)%/2 + Wy

Fo (W) = -W/R (18)

FLOW) = -W'/R « WO« WOWY + W

FL(W) = -W'/R

and qq , an effective plastic load, is related to effective

plastic stress resultants by

q? = (N?)' + Ng/r-Ng/r (19)

o g it
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The second equation involving W as its major displecement

can also be obtained by substituting Eq. (15) into Eq. (5):

4 Eh " Eh '
DV W - (e *veg) (WE+1/R) - (e +ve ) (Wi/T + 1/R)
1-v 1-v
=q-q5 - af - ohwW (20)

2

where v = VZ(VZ) and V" () = ()" + ( )'/r; the membrane

strains €p2€g are defined in Eqs. (8), effective plastic loads

qg and qg are given as

qg = Ng(w%+1/R) + Ng (Wi/T+1/R) (21)
ay = oy« 20Dy /e - o)/ (22)

Equations (17) and (20) are two fundamental governing

ecquations in terms of displacements for the present analysis.

Boundary Conditions

At the shell apex, the nature of axisymmetry requires that

W' 0) = 0 (23)
U) = 0 (24)

Along the outer edge (r = a), if the cap is clamped:
U(a) = W(a) = W'(a) =0 . (25)

On the other hand, if the cap is simply supported, it re-

quires that

o —h
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U(a) = W(a) = 0 (26a)
and that Mr(a) in Eq. (15) to be zero, i.e.
d°w . v aw p
D(d y v o= a?) = —Mr(a), r =g (26b)
T
where Mg is defined in Eq. (16).
Nondimensional Form
For convenience, following nondimensional quantities are
introduced:
x = rla ne = 12(1-v%)
A2 = m? az/Rh S = 4Eh2/R2m2
1
() =3( )/ p(r,t) = q(r,t)/a., (27)
e 2
€)= af )fox u = aU/h
v = VE/pR? t w = W/h

wy = Wi/h

wherc - is the classical buckling pressure of a complete

spherical shell of the same radius of curvature and thickness.

By using Eq. (27), nondimensional forms of Eqs.

(20) become

(1-\)2 a3 P

u
WE R w ¥ giR) ™ q
o x2 Eh3 1

and

(17) and

(28)

t; st e
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2 A
w
4 S e nA S & iy T f)‘
V' w - 12(cr+ve0) W'pE ;7)-12(ce+ver) ~ i ;7
4 4 4 s
=42 p - Rd(aBead) - At (29)
m Eh

where g(w) and f(w) terms are nondimensional counterparts of

similar terms in Eq. (18):

(1]

() = £L(w) + vE (W) + (1-V)[£, (W) - £,09)1/x

2
e A 1 2
F.lw) = - P-w * (W'} + wiwl
>\Z
folw) = -~ —w (30)
m
XZ
1 e 1 A 1 0 Myt
fr(w) 5 Wk Wit o+ wiwl ¢ owiwg
m
AZ
£' (w) = - w!
. n?
and Er’ Ee are nondimensional quantities of membrane strains
€r and €g 1N Eq. (8)
%
Er G- 57 w o+ %(w')2 *ow'wy
(31)
T == . ﬁw
6 X m2

CONSTITUTIVE EQUATIONS OF PLASTICITY

The response of an elastic-plastic material can be described

[15] by




(a) an initial yield condition, specifying the state
of stress for which plastic flow first sets in,
(b) a flow rule, relating the plastic strain increment
with the stress and the stress increment, and
(¢c) a hardening rule, specifying the subsequent yield
condition in the course of plastic flow.
In this paper, the von Mises yield condition, which describes a
smooth surface in stress space and represents a simple mathema-
tical function, is chosen as the initial yield condition. The
flow theory of von Mises and the Prager-Ziegler kinematic har-
dening rule are also selected; this rule predicts an ideal
Bauschinger effect.
In a 9-space stress field with origin 0 (Fig. 2), the von

Mises initial yield surface can be described by

F(o..) = k2 = constant (32)

For an initially isotropic material, the form of the function F
is invariant with respect to a rotation of the stress state.

The Prager's hardening rule [14] assumes that during plastic
deformation, the yield surface moves in a translation without
changing its shape and hence the subsequent yield surface takes

the form

F( -« @Wee) = K

oij i (33)

where aij represents the total translation of the yield surface

center which is a measure of the degree of work hardening. In




the space g4 a.. is the position vector of the yield surface

37713
center C which before plastic deformation takes place is located
at the origin (Fig. 2).

The flow rule of von Mises gives the fcllowing expression:

de. = 2Z-ax , ar > 0 (34)
1]

which indicates that the plastic strain increment de?i

lies in
the exterior normal of the yield surface (33).

The Ziegler's modification [15] of Prager's hardening
rule suggests that the surface (33) moves in the direction of

the radius connecting its center with the stress point (Fig. 2):

daij = (Oij-aij)du ’ dU >0 (35)
dX in Eq. (34) and dpy in Eq. (35) are to be determined.
Determination of dy is based on the condition that stress

point always remains on the yield surface in plastic flow.

This condition, in fact, states that for an infinitesimal in-

crement of loading the vector doij = daij must be orthogonal to
the outer normal to the yield surface:
SF(Oi.-ai.)
5 .
(do.lj d“ij) aoij 9 . (36)

Substituting (35) into (36) yields

(3F/80, ,)do, ,

dy = - ; = (37a)
(omn amn) ar/aomn

and hence




v 3 -

SR (BF/Bokg)dokR

. & P 37b
ij (om —amn)3F/30mn(01J ulj) ( )

n

According to Refs. [14,15], 33X in (34) can be obtained

by assuming daij = cderi)j and putting this relation into (36):
L
“mn mn

and hence

1 (3F/30y )doy 9F

de?. = 2 (38b)
ij € (aF/EOmn)(aF/aomn) 3Oij
where ¢ is the hardening coefficient and can be determined
from the uniaxial stress-strain relation.
Now, let us write Eq. (33) in terms of 3 principal
stresses:
f=F - k°
1= = 2 D ——
= 21@,-5)% + (5,-55)° + (T5-5)% - 03 =0 (39)
where Oy is the yield stress in uniaxial tension and 31 =
01 - @1, Op = 0, - @y, Oz = 03 = Oz
For the case of plane stress (Fig. 3), we have
O3 = 0z = O3 = 0 (40)
and Lq. (39) reduces to
_ =2 - = -2 £
f = 0] - 01 0, *+ 0, - = 0 e (41)

By putting Eq. (39) into Eq. (38b) and using relations




(40-41), we obtain

where
Sl = (01—02/2)0y
From Hook's law,

Aol

Aoz

It is also noted that

>
o

>
(@]
N =0

Introducing (42) into

S
gz
. ;[ 1 S152] {Aoli
D 2
Slbz S2 A02
’ SZ = (02_01/2)/0}’ 5 D = ¥ C
we have

(44) provides

{A"l} : [Cu Clz] ;A‘H‘
Aoz C21 sz Ae2

where

o\t

(D+E sg)

(Dv—ESIS =

2)

ol m

21
E vl
5 (D+E S7)

2 e 2
D(1-v%) + E(S]+2S;5,+53)

(42)

(43)

(44)

(45)

(46)




For a given displacement ficld, {Ae} are obtained from ihcfe-
mental forms of Eqs. (7) and (8). Eqs. (46) are the stress-
strain relations during the course of plastic flow (loading).
Otherwise, Eqs. (44) should be used for all other stress com-
putations.

Up to this point, the hardening coefficient ¢ in Eq. (43)
is the only constant yet to be decided. If the structure is in
a state of uniaxial stress, the stress-strain relation is the
same as that obtained from tension or compression tests. The

cxpression for the hardening coefficient ¢ can be readily ob-

tained from Eq. (42) by setting rel = Ae?, Ao = Aolz
1 3 reP
c 2 Bo bt
or
R P (47b)
reP

This cquation shows that the value of D is equal to the slope
of the uniaxial stress-plastic strain curve.

From Eqs. (47), the values of the hardening coefficient
for two special cases may be specified here: (i) for an
clastic-ideally plastic material, ¢ = D = 0, (ii) for a linear
hardening material, D = nnt/(u-ut), where Ee is the tangent
modulus. Uniaxial stress-strain curves for these two types

of hardening material are given in Fig. 4.




Nonlinear Hardening

Also given in Fig. 4 is the stress-strain curve for a
nonlinear hardening material. Its D value, instead of being
a constant, depends on the state of stress. One way of deal-
ing with this rather complicate situation is based on the
Ramberg-0sgood representation of a uniaxial stress-strain

curve [18]:

n-1
o 30 o
€* 5+ (48)
E 1B 9.7
where n = 1 + }gg %é7/7}0 )
& Yg.7%.95
¢ is the total strain, E is the slope of the linear portion
of the stress-strain curve, and 94,7 and 0y.g5 are the stress-

cs at which the curve has secant moduli of 0.7E and 0.85E,
respectively.

It is understoed that the nonlinear term in Eq. (48) is
the plastic strain. D value of this material can be obtained

as

" (49a)

We may generalize this equation to a multiaxial state of

stress [16,17]:¢

(49b)

where o, the effective stress, is defined as




= 3
g = »/—2- o!lj Oij (50a)

in which O;j is the deviatoric stress. For the case of plane
stress,

2
-0, 0y + 95 . (50b)

Loading Criteria

In the incremental solution procedure for elastic-plastic
problems, in addition to the constitutive relations, it is
necessary to have a loading/unloading criterion. For this
purpose, let's define % = (Bf/aoij)doij, where f has been
defined in Eq. (39). Loading, unloading and neutral loading
are associated with the plastic state f = 0, and are
characterized by ; > ; < 0 and % = 0, respectively. When
loading or neutral loading takes place, Eq. (46) must be

applied. On the other hand, Eq. (44) must be used when un-

loading occurs.

SOLUTION STRATEGY

For convenience, a simple flow chart is sketched in Fig. 5
to demonstrate the general solution procedure. The entire pro-
cess, which is to obtain for a given applied load q (or p) an
clastic-plastic transient response of axisymmetric spherical
caps, is divided into two major loops, namely, the elastic

solution and material property loops.




In the elastic solution loop, all material properties at
a specific time t are held constant. Consequently, the effec-
tive plastic loads, q? in governing equations (28) and (29)
are fixed and combined with the actual externally applied load
q, the problem is thus reduced to an eclastic large deformation
problem.

The second time derivative of w in Eq. (29) is approximated

by the Houbolt's third-order backwards difference expression [19]:
Wo(x,T) = (1/8%) [2w (x,7) - Sw (x,T - §)

+ 4w (x,T - 28) - w (x,T - 368)] (51)
where 6 = At is the equal time increment. The accuracy of this
representation is of order 62. Special attention is devoted to
the first few time steps where Eq. (51) cannot be applied

directly. Before giving the expression for these first few

time steps, we note that the initial conditions are of the form
w (x,0) =0, w (x,0) =0 (52)
From Eq. (52), expression of Eq. (51) for the first few
time steps can readily be obtained [2] as
1) =0, w (x,0) =0
2) T = &; since w (x,0) = 0, we have w (x,-8) = w (x,8)
and hence w (x,§) = (2/62) w (x,96)

3) 0t o= 28; W (w,28) = (2/6%) [w (x,28) - 3w (x,8)]

4) © > 26, Eq. (9) can be applied directly.




At this point, central finite differences are used to trans-
form Lqs. (28) and (29) to a discrete system of equations, and
the nonlinear relaxation'technique [12] is employed to solve
these nonlinear equations. The iteration in this loop is con-
sidered converged when the average absolute change of u and w
displacements at all points is less than .0001.

With the new displacement field {u}k, the material properties
must be updated so that the (nonlinear) stress-strain relation
can be satisfied at all points over the shell surface and through
the thickness. In the material property loop, the loading
criterion is first checked. 1If the material point is in an un -
loading situation or still in the elastic range, Hook's law is
used and the computation is very straight-forward.

If the material point is in a loading situation, incremental
strains {Ae} are computed from Eq. (7) by using {Au} =

{u}k - {u}k_1

(where k is the number of the material property
loop, see Fig. 5), and {Ac} are computed from LEq. (46). Having
obtained {Ac}, we find new values of {o}, {e°} and {eP}. The
effective plastic loads qg are then evaluated from integration
formulae (19), (21) and (22) through the use of a Simpson's
rule (9 thickness points are used for the entire computation
in this paper).

The material property is considered to be updated if aver-
age absolute change of displacements between the present and

previous material property loop is less than 0.0005. Otherwise,

the iteration goes to the elastic solution loop and the entire

— .



operation is repeated until the material property and equilibrium
cquations are simultaneously satisfied.

In our numerical computation, the number of nodal points
are selected such that a subsequent increase in nodal points
does not significantly affect the magnitude of the static
buckling load. With this consideration, 14 nodal points for
A = 5 and up to 22 points for X = 10 are adopted.

A time step must also be selected very judiciously. A good
selection is such that the results are within a desired accuracy,
but not too small in light of computer time considerations. A
rcasonable compromise of equal time increments of § = 0.10 is
used; this same time increment is also selected in Ref. [3].

The axisymmetric initial imperfection adopted in this
study is of the dimple type which was also used in Ref. [6].

This type of imperfection is expressed mathematically as

Wi = (Wi /h) (- xH? (53)

where in is the maximum imperfection which occurs at the shell
apex. Selection of this expression is, in fact, quite arbi-
trary. llowever, it does provide an adequate description for
actual shells since the important parameter is the maximum

cccentricity and not the imperfection shape function.

DYNAMIC BUCKLING CRITERION

Criteria for dynamic axisymmetric buckling of the shallow

spherical shell arc not as well defined as for static buckling,

B




and require an cvaluation of the transient response of the shell
for various load levels.

The criterion adopted most widely (Refs. [1-6]) is based
on plots of the peak nondimensional average displacement in time

history, A of the shell structure versus the amplitude of

max’
the load where A is the average displacement and has been defined

[3,5,6] in dimensionless form as follows:

a

a
A = [rWd'r / f rzdr (54)
o} o

The numerator is the volume generated by the shell deformation
and the denominator is the constant volume under the cap.

For loads below the dynamic buckling load, where the non-
linearities are small, the relationship between B and the
load amplitude is approximately linear. However, there may
cxist a certain value of load amplitude at which a very small
increase in this amplitude produces a very large in Amax‘ This

load is defined as the critical pressure for axisymmetric

buckling.

NUMERICAL RESULTS AND DISCUSSION

In reference [10], a computer program was successfully
developed for the large deformation elastic-plastic analysis
of spherical caps with initial imperfections. This program is

extended to include the dynamic effect for the calculation in




this paper. Before proceeding to obtain numerical results for
the title problem, it is advisable to solve an example problem
and compare the present result with other existing solucions.
The comparison should be very meaningful if other solutions
are obtained using complete different method and theory from

the approach adopted herein.

Comparison with Other Solutions

The example problem considered here is the dynamic response
of a shallow spherical shell subjected to a uniformly distributed
external step pressure q = 600 lb/in.2 Geometric dimensions
and material properties are outlined in Fig. 6. A total of 14
stations along radial direction, 9 thickness points and a time
step of At = 10-5 seconds are used for the calculation. The
material is assumed to obey von Mises initial yield criterion
with linear kinematic hardening.

The large deformation elastic-plastic dynamic response is
presented in Fig. 6, which also shows the result obtained by
assuming the cap to remain clastic throughout the analysis. The
static, elastic-plastic solution is also given in this figure.

The effect of material nonlinearity on the dynamic behavior
of the cap is significant. It is observed that the mean value
about which the apex displacement oscillates is greater in the
clastic-plastic situation compared to the eclastic analysis
wherein the vibration occurs around the static displacement.

Figure 6 also displays the solutions obtained by Nagarajan
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and Popov [20] and Bathe, Ramm and Wilson [21]. Both sclutions

were based on the finite element formulation, von Mises vield

condition with linear isotropic hardening and a Newmark gen-
er- "ized acceleration scheme. Despite differences in the solu-
tion method and theory employed, the comparison among these
results is excellent. It is noted that the same time step
(Io_ssoc.) is also used in their computations.

With the validity of the computer program established for

nonlinear dynamic analysis as demonstrated in this example, we

now proceed to tackle the title problem in the following section.

Large Deformation Elastic-Plastic Dynamic Buckling of Spherical Caps

From Ref. [10], we find that the large deformation elastic-
plastic response of axisymmetric spherical caps under static
uniform loading is independent of cap geometric parameter A, a
factor used to characterize the elastic spherical cap behavior,
and rather depends on individual gcometric dimensions. In other
words, two different spherical caps with the same A value have
the same load carrying capacity (pcr) in elastic analysis, but
may yield different magnitude of elastic-plastic buckling pres-
sures.

According to this observation, two types of spherical caps
studied in [10], with very much difference in geometrical di-
mensions, are selected again for the present analysis. They
arc identified as shells A and B in Figs. 7 and 8, respectively.

\11 geometrical dimensions in shells A and B are fixed with




exception that the thickness can be varied. By selecting

h = 0.26 in. and 0.0227 in. respectively for shells A and B,
both caps yield the same geometrical parameter 2 = 5, but have
different values of the thickness to radius ratio (h/R = 0.0104
for shell A and 0.0048 for shell B). Material properties of
both caps given in the figures are assumed to obey von Mises
initial yield condition with linear kinematic hardening.

In Ref. [6], two types of dynamic loading were considered
for the buckling analysis of elastic axisymmetric spherical
caps: wuniform step loading with infinite duration and a right
triangular pulse with various time duration. Results obtained
from this reference reveal that pulse duration has a very signif-
icant impact on the magnitude of the dynamic buckling load, and
that the step loading provides a more scvere loading situation
than the right triangular pulse for dynamic analysis. Based on
this conclusion, only uniform step loading with infinite duration
is considered for the present analysis.

As mentioned in SOLUTION STRATEGY, a judicious choice of
time step At = 0.1 is used for all computations in this paper.
A total response time of v = 50 1s also chosen so that if there
is no sudden jump in the average displacement A or no con-
vergence failure in iteration during this period of time, we
assume that no buckling occurs at this load. Convergence
criteria are specified in Fig. 5.

Some large deformation elastic-plastic dynamic response

curves for shells A and B are shown in Figs. 7 and 8, respec-




tively, which also show shell A buckles at P ™ 0.26 while
shell B at 0.36. For comparison purposes, some data of interest
are also listed here: both caps have the same elastic dynamic
buckling load Py ™ 0.46 [6], while their eclastic-plastic static
buckling values are 0.31 for shell A and 0.50 for shell B [10].

According to these results, some observations may be in
order. First, buckling loads for spherical caps of eclastic
matcrial are related to their geometric parameter A. Secondly,
plastic yielding plays a significant role in reducing the
buckling pressure of spherical caps; the influence of plastic
yielding increases with increase of the thickness to radius
ratio. For example, plastic yielding reduces the dynamic
buckling pressure P for shell B (h/R = 0.0048) from 0.4€¢ to
0.36, a 22% reduction in buckling capacity. On the other hand,
the reduction increases to 43% (from 0.46 to 0.26) for shell A
(h/R = 0.0104). This indicates that the geometric parameter A
becomes meaningless in elastic-plastic analyses. Another
important observation is that the dynamic effect also reduces
the buckling pressure of spherical caps. This is evidenced by
the fact that dynamic effect cuts down elastic-plastic buckling
loads for shell A from Pep = 0.31 to 0.26, for shell B from 0.50
to 0.36.

From dynamic response curves in Figs. 7 and 8, it is found
that in the load range above the buckling pressure a larger load
level requires a shorter response time to reach Am or to

ax
generate convergence failure in iteration. This seems to be




true for all cases treated herein except for one situation
which will be discussed when the case is encountered.

Because of having a greater thickness to radius ratio and
hence being more sensitive to plastic deformation, shell A is
selected to examine the effect of initial imperfections on the
cap elastic-plastic dynamic buckling pressure. On the other
hand, shell B is studied again to establish more evidence on
how the effect of plastic yielding on the buckling pressure is
influenced by the thickness to radius ratio.

By setting h = 0.0101 in. and 0.0057 in. for shell B of
Fig. 8, two caps are obtained, one having ) = 7.5 and h/R = 0.0021
and the other X = 10 and h/R = 0.0012. Large deformation elastic-
plastic dynamic response curves displayed in Figs. 9 and 10
show that buckling loads are read as Pep ™ 0.43 for X = 7.5 and
0.46 for X = 10, while their corresponding elastic dynamic
values are 0.44 and 0.49, respectively [10]. Reduction in
buckling loads because of plastic yielding in these two cases
may be neglected. Insensitivity to plastic deformation in these
situations may be attributed to the fact that as the thickness
to radius ratio becomes smaller, the membrane effect tends to
bc more dominant. At the time when the cap buckles, the de-
velopment of plastic deformation may be still very limited or
of minor importance.

It is noted that Fig. 9 provides the first and only excep-
tion that a smaller load magnitude takes a shorter response

time to reach Am or to yield convergence failure in itera-

ax
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tion, although the difference between the maximum response
times for p = 0.43 and 0.44 is negligible.

Now, let us examine the combined effect of nonlinearities
in material and geometry and initial imperfections on the
dynamic buckling of spherical caps. As alrcady mentioned
earlier, shell A of X = 5, whose geometric and material pro-
perties are given in Fig. 7, is selected for this analysis.
Three values of initial imperfections in/h = 0.1; 0.5 and 1.0
imposing on the cap domain of shell A are considered. Dynamic
response curves of these three cases are shown separately in
Figs. 11, 12 and 13.

Buckling loads read from these figures are Pey - 025,
0.17 and 0.13 for Wio/h = 0.1, 0.5 and 1.0, respectively. These
valucs together with those of static-elastic, dynamic-elastic
and static elastic-plastic [6,10] are listed in Table 1 and
plotted in Fig. 14. Also recorded in Table 1 for comparison
purposes are some buckling loads obtained in Fig. 8 and Ref.

[10] for shell B (A=5).

Table 1. Buckling loads for two clamped spherical caps (shell
A, A =5, Fig, 73 shell B, A = 5. Fig. §)

W Elastic Elastic-plastic
i0 shells A and B shell A shell B
h Static Dynamic Static Dynamic Static Dynamic
(6] (6] [(10] [10]
0 .64 .46 .31 «20 i, + 50
.1 .54 .39 w28 «2d .43 -
. v 34 A .20 « 17 o -

1.0 o i .185 o 12 w13 + 13 -




Results exhibited in Fig. 14 show that imperfections do
indeed have a significant impact in reducing buckling capacity
for all cases considered here, although they are influenced in
a different manner. The difference in buckling load reduction
may be examined from two different bases. First, if the ex-
amination is focused on the same material property (elastic or
clastic-plastic), the rate of change of the buckling pressure
Por with respect to the imperfection Wio/h is smaller for the
dynamic response than for the static. As a result, the reduc-
tion of buckling loads due to dynamic effect decreases with
increcase of the imperfection magnitudc.* As the imperfection
cxceeds a certain magnitude (wio/h > 0.75 and 0.85 for the
clastic and elastic-plastic material, respectively), the
dynamic buckling loads may be even higher than the correspond-
ing static buckling values. This finding suggests that the
statement -- the dynamic effect introduced by a time-dependent
load can reduce the load carrying capacity of a structure [22]
-- is true for the perfect spherical cap, but not necessarily
true for the cap with initial imperfections.

Secondly, if the examination is centered on the same
loading situation (static or dynamic), results in Fig. 14
clearly demonstrate that both plastic yielding and initial
imperfection have the same effect of lowering the shell load

carrying capacity. Figure 14 also shows that the imperfection

*

This reduction is referring to the difference between static
and dynamic buckling loads under thc same material property and
the same imperfection magnitude Wio/h (see Fig. 14).




is a more dominant factor, since the influence of plastic
yielding diminishes as the imperfection magnitude increases.
The informations discussed here are quite useful for
spherical cap designs. A valid design of these structures
should reflect the actual material property, consider both
static and dynamic responses, and also take into account the
cstimated magnitude of imperfections in light of manufacturing

considerations.

CONCLUSIONS

The objective of this paper is to obtain large deformation
clastic-plastic dynamic buckling loads of axisymmetric spherical
caps with initial imperfections. The problem formulation is
based on governing differential equations of motion, treating
the plastic deformation as effective plastic loads which are
combined together with actual applied forces.

Equations of motion are converted into a discrete system
of equations by replacing all spacewise derivatives with central
finite differences and the second time derivative with a
lloubolt's third-order backwards difference expression [19].
Resulting nonlinear algebraic equations are then solved by a
step-by-step time integration scheme for displacements. At
each step of integration, the solution procedure is divided into
two major loops, namely, elastic solution and material pro-
perty loops.

In the elastic solution loop, all material properties are
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held constant and nonlinear equations are solved by the non-
linear relaxation technique [12]. 1In the material property
loop, material properties are updated to correspond the new
computed state of stress to the specified stress-strain rela-
tion. The procedure consisting these two loops is repeated
until governing equations and the specified stress-strain re-
lation are satisfied at all points over the shell surface and
throughout the thickness. The solution procedure discussed
here is sketched in Fig. 5 for references.

The plasticity relation adopted herein is an incremental
flow theory which is based on von Mises initial yield condition
and the Prager-Ziecgler kinematic hardening rule. It is noted
that this theory takes into account the Bauschinger effect and
that the computer program developed for the present analysis is
equipped to handle the material of elastic-perfectly plastic,
linear and nonlinear hardening behavior. Nine thickness points
and a Simpson rule are used for all numerical calculations of
plastic deformation in this paper. A dimple type of imperfec-
tions is selected which provides a quite adequite description
of the local nature of spherical shells.

To verify the validity of the theory and the solution
method employed, the procedure is applied to obtain the large
deformation elastic-plastic dynamic response of a spherical
cap (Fig. 6). The present solution along with those obtained
by Nagarajan and Popov [20] and Bathe, Ramm and Wilson [21]

arc displayed in Fig. 6. Their solutions are based on a finite




clement formulation, isotropic strain hardening and a Newmark
time integration scheme. Despite differences in the theory

and solution methods utilized, the comparison among these three
sets of results is remarkably good.

The solution procedure is then applied to solve the title
probiem; two spherical cap models shown in Figs. 7 and 8 are
chosen for the present analysis. The loading exerted on the
cap surface is assumed to be a uniform step pressure of infinite
duration. The results, which are given and discussed in great
details in the previous section, may be summarized as follows:

(1) For axisymmetric spherical caps of elastic material,
their static and dynamic buckling loads (pcr) are function of
cap geometric parameter A. However, for caps of elastic-plas-
tic material, these values are independent of \A. This means
that two spherical caps, which have the same )\ value but dif-
ferent geometric dimensions, may yield the same magnitude of
buckling load (pcr) if their materials are elastic; however,
their Fep values may be different if their materials are elas-
tic-plastic. For example, Table 1 shows that if both shells A
and B (both have X = 5) are made of the elastic material, their
static buckling loads are of the same magnitude (pCr = 0.46);
both also have the same dynamic buckling value (pCr = 0.46).
But when their materials are assumed to be elastic-plastic,
the static buckling loads are 0.31 and 0.50, and the dynamic
values are 0.26 and 0.36 for shells A and B, respectively.

(2) Plastic yielding plays a significant role in reducing




the buckling pressure of spherical caps. The influence of

plastic yielding increases with increase of the thickness to
radius ratio. This observation may be illustrated from Table
1 that plastic yielding reduces the dynamic buckling pressure

1 for shell B (h/r = 0.0048) from 0.46 to 0.36, a 22% re-

Per
duction in buckling capacity. On the other hand, this reduc-
tion increases to 43% (from 0.46 to 0.26) fer shell A (h/R = 0.0104).

(3) For perfect spherical caps, dynamic effect has an
influence of lowering their load carrying capacity. This can
be scen from Table 1 that dynamic effect cuts down their elastic-
plastic buckling loads (pcr) from 0.31 to 0.26 and from 0.50
to 0.36 for shells A and B, vespectively.

(4) For imperfect spherical caps, dynamic effect on their
load carrying capacity depends on the magnitude of imperfections.
lFor example, the elastic rgsults of shell A (A=5) displayed in
Fig. 14 demonstratc that when imperfection Wio/h is less than
0.75, its dynamic Por values are smaller than its static values.
On the other hand, when WiO/h exceeds 0.75, the situation is
completely reversed. A similar situation is also observed for
shell A of elastic-plastic material.

Finally, it may be concluded that a realistic design of
spherical caps should be based on the actual material property,
consider both static and dynamic responses, and take into
account the estimated magnitude of imperfections in light of

manufacturing considerations.
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fo cope with the expanding technology, our society must
be assured of a continuing supply of rigorously trained
and educated engineers. The School of Engineering and

Applied Science is completely committed to this ob-

jective,




